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ABSTRACT

cory
INSPECTED

This paper derives a feedback control £(t), !f(t)lE <r, r>0, which

forces the infinite dimensional control system g%-= Au + Bf, u(
to have the asymptotic behavior u(t) + 0 as t + « in H.

infinitesimal generator of a Co semigroup of contractions eht

Hilbert space

of controls E into H.

0)=uO€H

Here A is the

on a real

H and B is a bounded linear operator mapping a Hilbert space

An application to the boundary feedback control of a

vibrating beam is provided in detail and an application to the stabilization

of the NASA Spacecraft Control lLaboratory is sketched.
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FEEDBACK STABILIZATION OF %%-z Au + Bf

IN HILBERT SPACE WHEN 1If) < r

Marshall Slemrod'’?

1. Introduction

;o :
- ~ v
“\ n this paper we considersthe feedback stablization of a linear control

i

system in an infinite dimensional state space. However unlike the standard

feedback control problem where the goal is to find a linear feedback control .
n Ler'sos
law, we restrict ourselves to the case where the controls f£f(t) satisfy thea

i

priori constraint, lf(t)lE € r, > 0. (Here the controls f£f(t) 1lie in a

Hilbert igisg//i(/and I-IE denotes the norm of E.) This contraint

necg;sftates a choice of a nonlinear feedback law which drives our state wu(t)
to zero as t » =,

’T*V 3 ke J}/ :
We—wiill derivevfuch a nonlinear feedback law based on energy stability

methods. The analysis of the asymptotic behavior of the state u(t) is based

on the theories of nonlinear evolution equations and contraction semigroups.

While an earlier paper‘ {1} treated a related problem of sub-optimal control

the results given here on feedback stabilization are new. A related optimal
0
control problem was considered by Barbu®f2]+ <

PR

A strong motivation for this paper has been the work of Hubbard and his

co-workers [3], [4] and Balakrishnan (5], [(6]. In [3], (4] both laboratory
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experiments and compgter simulations for the boundary feedback control of a
vibraéing beam were described. 1In particular the problem of {3], (4]
corresponds to a'specialAcase of theory given here. Hence it is natural to
apply the abstract results of this paper to the concrete example of Hubbard et
al. .This is done in the last section where it is shown that the feedback
control given here yields a stablizing feedback. Similarly the papers of
Balakrishnan [S], [6] provide a mathematical framework for the stabilization
problem of the NASA Spacecraft Control Laboratory Experiment (SCOLE). The
last section will also sketch the application of the theory given here to that
problem.

The paper is divided into seven sections after this one. Section 2
provides a statement of the abstract control problem and a hint at the method
of resolution. Section 3 gives some brief preliminary results on the theory
of dynamical systems and nonlinear semigroups. Section 4 uses the ideas of
Section 3 to exposite a theorem of Ball and Slemrod on the asymptotic behaviorx
of a class of nonlinear evolution equations. Section 5 applies this theorem
to yield one resolution cf the feedback stabilization problem (Theorem 5.1).
Section 6 gives a survey of the results on asymptotic behavior of nonlinear
contraction semigroups and a useful theorem of Dafermos and Slemrod is
presented. Section 7 applies Dafermos and Slemrod's result to the feedback
stabilization problem in the case A has compact resolvent and E = R
(Theorem 7.1). Section 8 uses the earlier mentioned problems of Hubbard et al
and Balakrishnan as illustrative exémples.

We note that a good reference for the ideas on nonlinear semigroups and
asymptotic behavior is the monograph of A. Haraux [7]. Many of the
propositions used here may be found there. 1In addition nuﬁetous examples

illustrating the nonlinear semigroup theory are contained there as well.
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2. The control problem

Let H be a real Hilbert space with inner product <¢,«> and norm

and let E be a second real Hilbert space with inner product (e,¢) and norm
"'E' Also let A be the infinitesimal generator of a linear Cy semigroup
of contractions on H denoted by eAt, (In particular we know IeAtu 1<

fugd  for all ug € H and <A$,¢> < 0 for all 4 ¢ D(A).)
be a bounded linear operator from E to H.

We consider the abstract control system

du
E—-- Au + Bf ,

u(0) =ug e H .
Our goal is to find a feedback control
£(t) = K(u(t))
satisfying the constraint
lflE <r, r>0 ,
which will yield u = 0 globally asymptotically stable in some sense.
To do this first formally compute the time rate of change of the
‘"energy”:

4

2
- > + >
at Ju(t) lH <Au,u <Bf ,u

J

2
L 2

< (£,B u) .

Here we have used the fact <Au,u> < 0.

Finally let B

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

In order to force energy decay yet

satisfy the constraint (2.3) we use a saturating control law as suggested in

the work of Gutman (8] for finite dimensional systems, i.e. we set

L ]
YB u
*

1B ul
E

.

»
X(u) = = if 1B ulE >r

[ ]
if 1B ulE <r .

-3=
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Notice K(u) is continuous as a function of u and that the desired energy

dissipation is obtained: *
14 2 * »
2 at fu(t)1” < -riIB ulE if B ulE >r

(2.7)
. 2 *
< -IB ulE if 1B ulE <r .

In the next section we will analyze (2.1) with feedback f(t) = K(u(t))

and give sufficient conditions for its successful implementation.

3. Preliminary results on nonlinear semigroups

Definitions. let H be a real Hilbert space. A (generally nonlinear)
gemigroup T(t) on H is a family of continuous maps T(t) : H+ H, t ¢ R,
satigsfying (i) T(0) = identity, (ii) T(t+s) = T(t)T(s), for all ¢, s ¢ r'.
If in addition IT(t)$ - T(t)yl < 1P~y for all ¢, ¢ € H, t > 0, T(t) is

called a contraction semigroup.

For ¢ € H define the positive orbit through ¢ by 0+(¢) = Ut R+T(t)¢.
€
The w-limit set of ¢ 1is the (possibly empty) set w(y) = {p ¢ H; there
exists a sequence t, + » as n + » such that T(t,)¢ + ¢y as n + =}. The

weak w-limit set of ¢ 1is the (possibly empty) set given by w,(¢) = {y € H:

there exists a sequence t, + ® as n + @ such that T(t )¢ =y as n + =}.
(Here the symbol — ‘denotes weak convergence in H.)
As subset C of H is said to be positively invariant if T(t)CC C

for all t ¢ R', and invariant if T(t)C =C for all t ¢ R'.

- »
Theorem 3.1. (i) If ((¢) is precompact .then w(¢) is a nonempty, invariant

set in H. (ii) If each T(t) is sequentially weakly continuous on H (i.e.
T(t)g, -> T(t)¢ 1is ¢, —= ¢), then (¥(¢) bounded implies w,(¢) is a

nonempty, invariant set in H.

-4~
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Proof. (i) The proof is a direct consequence of Prop. 2.2 in Dafermos [9].
(ii) since 0+(¢) belongs to a sequentially weakly compact set in H, w,(¢)
is non-empty. Furthermore, since H is separable this weakly compact set may
be regarded as a compact set in a metric space induced by the weak topology
(see Dunford and Schwartz [10]). The result again follows from Prop. 2.2 in

Dafermos [9].

Hidden in Theorem 3.1 is the essence of this paper. Namely that in the
study of the feedback control system described in Section 2 we may need to
use, under different circumstances, either part (i) or part (ii) of Theorem
3.1. Roughly the idea is that in the study of nonlinear semigroups of
"parabolic"” type and nonlinear contraction semigroups of "hyperbolic" type
sufficient conditions have been given for 0+(¢) to be precompact and hence
w(y) to be nonempty (see Henry [11], Pazy [12], and Dafermos and Slemrod
(13]). On the other hand other applications may yield only the information
that 0+(¢) is bounded and hence the main tool in studying the asymptotic

behavior of the feedback system will be the weak w-limit set.

4. Semilinear evolution equations

We recall some standard results on nonlinear evolution equations.

Consider the initial value problem

du
3t Au(t) + F(u(t),t) ,

(4.1)
u(to) = uo ’

At

where A 1is the infinitesimal generator of a linear Cy semigroup e on a

real Hilbert space H with inner product <»,«> andnorm | I, F : Hx R+ H

is a given function and ug ¢ H is a given initial datum.
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Definition. Let t1 > tge A function u ¢ C([to,t1]:H) is a weak solution

of (4.1) on [ty,tqy] if u(ty) = Uy, F(u(e),+) € L’(to,t1;H) and if for each
w € D(A.) the function <u(t),w> is absolutely continuous on [to,t1] and
satisfies

\

%;-(u(t),w) = <u(t),A'w> + <F(u(t),t),w>

for almost all t ¢ [to,t1].

Theorem 4.1. (cf. Balakrishnan {14], Ball [15]). Let ty > tg. A function

u [to,t1] + H is a weak solution of (4.1) if and only if F(u(t),.) ¢

L’(to,t1;H) and u satisfies the variation of constants formula

A(t-ty)
ue) =e 0 g+ [f eAEr(ugs), 5)as

for all t ¢ [tg,tq].
The next result characterizes the asymptotic behavior of solutions to

(4.1) in an important special case. Also we assume system (3.1) is

autonomous, i.e. F(t,u) = F(u), t5 = 0.

At of contractions.

Theorem 4.2. Let A generate a linear Co semigroup e
let F : H+ H satisfy
(1) F 4is locally Lipschitz
(13) g = ¥ ==> F(y,) » F(y) ,
(111) <F(¢),¢y> < 0 for all ¢ € H.
Then (4.1) possesses a unique weak solution u(tjuy) on RY for each uy € H.

Furthermore T(t)u, = u(t,u;) defines a semigroup on H, “w(“o) is a

nonempty invariant set for each ugy ¢ H, and for each ¢ € w,(uj)

<T(t)y, F(T(E)y> = 0 for all t ¢ R" .
If in addition, the only solution to the above equation is ¢ = 0, then

u(tjug) =20 as t +» =,




Proof. fhe proof is given in the paper of Ball and Slemrod [16]. A central
idea of the proof is the dissipative mechanism (iii) yields 0+(u0) bounded
and hence by Theorem 3.1 (ii) mw(uo) is a nonempty, invariant set in H.

The Liapunov functional llu(t:)ll2 is then used to identify .« (u,) as noted

in the theorem. \

5. Application of Theorem 4.2 to the stabilization problem

In this section we will discuss the asymptotic behavior of the feedback
system (2.1), (2.2), (2.5), (2.6), i.e. we will study the nonlinear

evolutionary system

-g%=Au+G(u) ' " (5.1)
u(0) =u, , (5.2)
with
*
Glu) =-22% ¢ p3'wior ,
1B ulE (5.3)
* *
= «-BB u if g Bur<r ,
where A, B are as given in Section 2.
Theorem 5.1. For each uj; ¢ H there is a unique weak solution u(t;up) =
T(t)u, of (5.1), (5.2) defined for all t ¢ R' with {0} a stable
equilibrium. If in addition B 1is compact and the only solution of the
equation
B'eAt y = 0 for all t ¢ R* (5.4)

is y = 0, then wu(t;uyg) >0 as t + o for all ugy € H.

g,
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Proof. First we note G(u) is globally Lipschitz continuous. For if uy,
* * =

Uy € H and we set Yy = Buy, Y, = B u, then |y1l < r and lyzl >r

implies

ry 2
16(u )Gt < [[]8[[[ 1y, - TR
\

< IYIIYZHE - ryzuE

1y (¥ 0 = By 0p) + vy iy 1o - ry1

(Iy,llE ﬂyz-y1nE + HY1(IY1IE-r) + r(y1~y2)nE
< |,'B,||('Y2_Y1HE + HY1. - rl + Iyz-y1u)

<3[[Ilf] ry,~y 1 .
Here we have used Il[olll to denote the operator norm on the space of

bounded linear operators E + H. On the other hand when both Yir Yo have

norm greater than or equal to «r
Y, Y,

- ]
Iy1llE nyzﬂE E

|||B|||r
< 1Y 0y 0 = ¥, 0y,0p

i
ly,IEIyznE E

16(u,)=Glu)n < [|[B]] ]z

RIRFL R P SIS FU LM SN MU

(2|y1uE nyz-y1nE)

< 2[{[B[|] ry,~yng .

Of course if ly1l <r, ly2I € r then |G(u1) - G(uz)l < |||B||| |y1-y2nE so
in general IG(u1) - G(uz)l < 3|||B|||2lu1~uzl for all wu4y, u, € H,

Next note that the compactness of B implies G(wn) + G(yp) if wn-a Ve
*

* * 2
Also <G(¢),y> = -rIB'wIE if 1B yt>r and <G(y),y> = -B ¢IE if 1B y8 ¢ r.
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So Theorem 4.2 applies and tells us that for each uj € H w,(ug) is a

nonempty invariant set in H and for each V¢ ¢ ww(uo)
<T(E)Y,G(T(t)y)> = 0 for all t ¢ R . (5.5)

But <T(t)y,G(T(t)y> = 0 for all t ¢ R implies B T(t)y = 0 for all

t € Rf

which in turn tells us G(T(t)y) = 0 for all ¢t ¢ R'. But then the
variation of constants formula of Theorem 4.1 shows for ¢ e u,(ug) that
T(t)y = ePty. so (5.5) in fact implies (5.4) and hence w,(ug) = {0}. The
fact that {0} is stable trivially follows from the estimate

lT(t)uol < Iuol.

Corollary to Theorem 5.1. Consider the semilinear control system

g%-= Au + Q(u) + Bf ,
{(5.6)

u(0) = uo '
where A, B are as in Theorem 5.1 and Q : H+ H is nonlinear, locally
Lipschitzian, and dissipative i.e. <Q(u),u> < 0 for all u ¢ H. Then the

conclusion of Theorem 5.1 still holds where f(t) = K(u(t)).

Proof. If we insert £(t) = K(u(t)) into (5.6) our feedback system is

du
at Au + Q(u) + G(u) .

But now that argument given in the proof of Theorem 5.1 applies verbatum

with G replaced by Q + G.

6. Asymptotic behavior of nonlinear contraction semigroups.

Let T(t) be a nonlinear semigroup of contractions on a real Hilbert

space H. We denote D(A) be the set of those ¢ ¢ H for which

lim T(h;y-y
h+0+
-9-
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exists and define

~A$ = lim !iﬂ%i:i
h+0+

It is well known from the theory of nonlinear contracticn semigroups
(e.g. [17]), [7]) that associated with a ndnlinear semigroup of contractions
there is a unique (possible multi-valued) operator =-A, that A is maximal
monotone, D(A) is dense in H, range (M+I) = H for any X > 0, and
(M+I)~1 is a continuous single-valued function.

On the other hand given a maximal monotone operator A we know for every

ug € D(A) there exists one and only one function u(t) : (0,») » H such that

( u(t) € D(A) ,

du(t)

Frank L7[(0,=); H] with

I§%1 © < IAOuol ’
L [(0,»);H]

du(t)

at + Au(t) 3 0 on (0,w) ’

u(0) = ug .

\

Here Ao, the minimal section of A, is the function which assigns to each
$ ¢ D(A) that element of A¢ which has least norm. Furthermore u is right

- differentiable at any t ¢ [0,») and

+
d u(t) _ _,0
BT A u(t)
for all t ¢ [0,=).

If u and v are solutions associated to initial data ug and vy

then

fu(t) - v(t)lH < lu.~v for t >0 .

0 OIH

-10~
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We note by T(t) the extension by continuity of the map ug ¢ D(A) +
u(t) € D(A) to D(A). If D(A) is dense in H then T(t) defines the
nonlinear contraction semigroup on H "generated” by -A.

The asymptotic behavior of nonlinear contraction semigroups has been

characterized by the following theory of Dafermos and Slemrod (13].

Theorem 6.1. Let A be a maximal monotone operator on a Hilbert space H.

»_mama

Assume O ¢ range (A) and (AA+I)-1 is compact for some ) > 0. Then for

any ug € D(A) the weak solution of the Cauchy problem

du
3t + Au(t) d 0

u(0) = uo ’

B En

given by u(t) = T(t)uy approaches as t + «» a compact subset Q of a
sphere {y:; ly-al =r}, r < luo-al, ae A"O. Furthermore Q is minimal,
invariant, and equi-almost periodic under the semigroup T(t) generated by -A

—

and T restricted to the closed convex hull of § coQ is an affine group of

isometries. If in addition wuj € D(A) then the set Q is contained in 4
D(A), and Alq  is compact and lies on a sphere centered at 0. Moreover
cofl C B(A) and the restriction of AO to coff is affine. f

wWhile the proof is contained in [13] and [7] we note the main idea again

relates back to Theorem 3.1. Recall that we noted after the statement cf

v

) Theorem 3.1 that part (i) of the theorem applied to certain "hyperbolic” 3
) 4
; semigroups where we could actually show 0+(¢) is precompact. Theorem 6.1 i
5 identifies a class of these semigroups as ones arising from nonlinear

g contraction semigroups with compact resolvent. The rest of the theorem

essentially follows by identifying the w=-limit of T(t)¢ with the aid of the
éﬁ Liapunov functional Iu(t)lz. l
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7. Application of Theorem 6.1 to the stabilization problem.

In this section we discuss the application of Theorem 6.1 in the special -

case E = R. In this case B is a fixed element in H. Furthermore note
that for ¢, y € D(A) that -A-G is monotone. To see this set y = B'¢,
z = B'z and observe '
(i) for IylE <r, IzlE< r,
<p=¥, Ap + G(§) = Ay ~ G(Y)> < =|y-z|%;
(i1) for IynE > r, IzlE >r,
<p-9, Ap + () - Ap - G(y)> < -r(y-g)-(Tih'- TéTﬂ <0 ;
(i1i) for IylE <r, IzlE > r,
T
<o=v,Ad + G() - Ap - G(Y)> € =(y=E) (¥ -IE-f—)
<-y? +xly| + |y| lg] - xlel
dyl=ndel=lyD < =tlyl-n?.
Hence we see that the operator A = -A - G defined on D(A) is monotone.

Notice also that the above argument also shows =G 1s monotone. Since -G

is continuous (see Section 5) and -A is maximal monotone (by the Hille-

Yosida-Phillips Theorem) a theorem of G. F. Webb [18] asserts that the sum

-A -G is maximal monotone.

Now we are prepared to prove our stabilization theorem.

Theorem 7.1. For each ug € H there exists a unique weak solution of (5.1),

(5.2) for all t € R* with {0} a stable equilibrium of (5.1). If in

1

addition E = R, (AI-A) ' is compact for all real ) > 0, and the only

solution of the equation
B.eAtw =0 for all t ¢ R'
is ¢ = 0, then u(t,uy) + 0 as t + = for all u, ¢ H.

Notice here that Theorem 7.1 improves on Theorem 5.1 in that weak

X
convergence is now replaced by strong convergence. Of course the price paid
-12-
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is that we assume E =R and A has compact resolvent.

Proof of Theorem 7.1. We shall apply Theorem 6.1. We have alrzady shown

= =A - G is maximal monotone and also trivially 0 ¢ range(A). Now let

{h;} be a bounded sequence in H with u, ¢ D(A) such that

un hn
-Aup = G(u,) + === o= (7.1)

for A > 0. Take the inner produce of both sides of (7.1) with u, to see

2
Iul < <u,h > tul th 1
n n’'n n n

and hence lunl < Ihnl. Thus {un} also belongs to a bounded set in H.

Rewrite (7.1) as

<2

L =1
-(a -5 Du =5+ 6 . (7.2)

The Lipschitz continuity of G shows the right hand side of (7.2) lies in a

bounded set of H and the compactness of (A-AI)'1 for A > 0 shows {un}

lies in a compact subset of H. Thus (A +I)-1 is compact for all A > 0.
Now let uy € D(A). Theorem 6.1 tells us u(t) = T(t)uo, the strong
solution of (5.1), (5.2), approaches as t + », a compact subset Q of a
sphere {y; Iyl = r} where Q C D(A). Let vy € Qo Since Q 1is invariant
we must have lT(t)voI =r for all t ¢ R, and differentiation with respect

to t and use of (5.1) shows B*'r(t)v0 =0 for t ¢ R'. But (7.4) coupled

At

with (5.1) and the invariance of  shows T(t)vo = e""vqy for Vo € Qe

*
Hence for Vg € Q, B eAtv0 = 0 for all ¢t ¢ r*. But by the hypothesis of the

theorem Vo =0 and Q = {0} for wuy € D(A). Since D(A) is dense in H

and T(t) 1is a contraction the triangle inequality readily shows Q = {0}

for all u; ¢ H as well. Since the existence, uniqueness, and stability have

already been prove in Theorem 5.1 the proof is complete.
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Sr 8. Examples

8.1. Boundary feedback control of a vibrating beam.

In (3], [4) Hubbard and his co~workers considered the following boundary

control system for a cantilever beam.

o

B

Denote by w(x,t) the displacement of the beam where w satisfies

) 2 4

(N 3__‘21+l.l;.=0 for 0 < x<L ,

i it 9x

i {

. w
w= 5;-- 0 for x=0 ,

% 32w 2 1 (.8.1)

s > == + f(t)

*ﬂ ax ot 9x

DA > for x=1L .
2w _ 2%

3 383 3t2

Here w(x,t) denotes the displacement of a beam and f£(t) is an applied
\ scalar boundary control, |£(t)| < r.
In addition we prescribe initial conditions on the displacement and
‘velocity of the beam,

wi{x,0) = wo(x) '
(8.2)

-

wt(x,O) = vo(x) ’ 0<x<L .

For analytical convenience we rewrite (8.1) in the following first order

A/

k)

y form

)

1 aw

Y
) .
4 -

: rle 3

}I

! R (8.3) ¥

i da _ 3w | N

at 8x3 x =1
2

: % - 3—;’- l + £(t)

: Ix x =1L

t
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32w

where we require a(t) = %%- . b(t) = .
x =1L dtax x =1L

The above first order formulation motivates us to formally define the

linear operator A

w - d4w
4
A v - dx
a
b d3w
J ax lx =L
dzw
2 =L
-~ dx x -
so that when
w 0
v 0
u = a r B= 1y
b 1
(5.3) has the form
du
N = + . .
3t Au + Bf (8.4)

To be precise we must identify the domain of definition of A. To this
extent we first define the Hilbert space H:
2 2
H= {(w,v,a,b) ¢ H (0,1) x L°(0,1) x R x R ;
w=w' =0 at x = 0}
endowed with the inner product
<(w,v,a,b), (w,v,a,b)> =

fg (W''(x) w''(x) + v(x)V(x))dx + a3 +bb .

Now we take the domain of. A as

-15=
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D(A) = {(W,V,a,b) € H4(0'1) x H2(0,1) x Rx R H

dv
w=w'=0, v=v'=0 at x=0, v = a, i b at x = L} .

It is an easy computation to see that <Au,u> is dissipative for
u € D(A). In particular this shows that A is dissipative i.e. <au,u> < 0
for u ¢ D(A) or equivalently =~A is monotone <-Au,u> » 0 for u ¢ D(A).

We also note that A 1is an infinitesimal generator of a linear Co
semigroup of contractions T(t) on H. To show this we simply apply the
Lumer-Phillips Theorem [18] which asserts A will be the generator of such a
semigroup if and only if A is dissipative, densely defined on H, and
satisfies the range condition R(-A + AOI) =H for some Ay > 0.

We have already shown A is dissipative and it is a simpie observation
to see that it is densely defined. To check the range condition we let
(g,h,c,d) be a generic element of H. Then satisfying the range condition is

equivalent to finding u = (w,v,a,b) ¢ D(A) with

-y + Xow = g ’ (8-5)
4
_dwn’-xvuh ’ (8.6)
4 0
dx
3
._d w + Aoa = Cc ’ (8-7)
dx x =1L
2
d"l +ap=a . (8.8)
dx x =1

From the first two of these equations we see w should satisfy

4

A% 22w =h+irg . (8.9)
2" %o 0

dx

We now solve the ordinary differential equation subject to the boundary

conditions w(0) = 0, w'(0) = 0, and

-16=
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3
-8¥ = c+ag (8.10)
3% 0
dx
dzw 2 dw dg
—— — + .
St Ay = A+ o (8.11)

dx
at x = L. This can bevdone by explicitly solving (5.9) with four constants
of integration and then using the four boundary conditions to evaluate the
constants. This will yield w ¢ H4(0,1) with w(0) = w'(0) = 0, which
with v defined by (5.5) and a, b given by a = v(L), b ='g§ (L) solve
(5.5)-(5.8). Straightforward inspection of (5.5)=(5.8) also shows u =
(w,v,a,b) 1is in D(A).

This analysis works for any Ag real. This is no surprise since as we
shall prove the spectrum of A is purely imaginary, discrete, of the form
A =3 iuz where |y satisfies the transcendental equation

1 + cosyL coshyL + p(sinhylL cosuyl - coshyl sinyL)

3 4 (8.12)
= u (cosulL sinhpylL + sinuyL coshyl) + y (1 = cosylL coshyL) = 0 .

Finally we trivially note that B is a bounded linear operator on the
control space E = R to H. Hence we have rewritten the boundary control

system (8.1), (8.2) in the form (2.1), (2.2). Here the initial data is

and we set (a,;)E = a;, a,: € R.
Also since the imbedding of H4(0,1) x H2(0,1) »> H2(0,1) x L2(0,1) is
compact we see D(A) is compactly imbedded in H. Hence (A = AOI)'1 is

compact for any real xo.,
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So far we have shown A is the infinitesimal generator of a C0 semi-

group of contractions T(t) on H, (1\-)‘01)-1 : H+ H is compact. To apply
Theorem 7.1 we must now show B.eAtw =0, yp ¢ H, for all ¢t ¢ Rf, implies
Y = 0. But if B'eAtw = 0 then <Bq, eAtw> =0 for all q ¢ R But by the
definition of B if we write u(t) = e’ty = [w(ti,v(t),a(t),b(t)] then
qS(t) = 0 for all gqe R and t ¢ R+, i.e. Q(t) =0 for all t ¢ R'. So
our goal now is to show g(t) =0 for all t ¢ R* implies y = 0.

To do this we shall compute eAtw for y ¢ D(A) explicitly. First let
us extend H to the complex Hilbert space H = H @ iH where H has inner
product << , >>

<<x_ + iy1, x2 + iy2>> =

1

XX <Y y> - i [<x1,y2> - <x2.y1>] .

Then A is also the infinitesimal generator a Cj, semigroup on
Af t
H: e tx = eAtRe x + ieh Imy for x e H .
The advantage of introducing H is that we can now represent eAtuo as an

eigenfunction expansion. To this end let u ¢ D(A) so that Au = Au. Then

‘if we write

€ D(A)

v » 4 £

u mst satisfy

v+ Aw =0
w" "(x) + Av =0
I!I+ =
v Aa 0 at x=1 ,
w" + b =20
wemw' =0 at x=0 ,

and a = Jw(L), b = Aw'(L) since u € D(A). Doing the obvious eliminationsg

we see w must satisfy
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wor(x) + A\2w(x) =0, 0<x<L , (8.13)
w=w'=0 at x=0 , (8.14)

-w''' + Azw =0
at x=1L . (8.15)

w" + xzw' =0
From (8.13), (8.14) we kno& w(x) is of the form w(x) = C(sin ux =~
sinhux) + D(cos pux - coshuyx) where X = % iuz. From (8.15) we seen the
additional relations
C(sin pL + sinh pL) + D(cos uL + cosh yL) =
(8.16)

-uz{c(cos uL - cosh pL) + D(=sin yL - sinh uL)}

and
Cl(cos yL + cosh pL) + D(-sin pL + sinh pL) =
(8.17)
u{C(sin yL = sinh pL) + D(cos ulL - cosh pL)}
must be satisfied.

Elimination of C and D from (8.16), (8.17) yields the spectral
formula (8.12). For each pu satisfying (8.12) the associated C and D are
determined from either (8.14) or (8.17). If we denote the positive solutions
of (8.12) by {u,} then 0 < uq < yy < + + » and the eigenvalues are A _ =

n

+1u2 n=1,2,¢e0,hp = -iug, n=1,2,3,... . The associated eigenfunctions

nl
are
- B
Yn
+iu§wn
u, = -for A\, , N = 1,204
+1u§wn(L)
+1p2w, (L)
L J
and

-19-
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-
wo o)

.
iunwn
u = for 2

-1 2 -Nn r
-iunwn(L)

n=1,2... .

L-iuiwn(L)

(Here we have used v, = A, wn-)

From (8.13), (8.14), (8.15) we find

) A - 2 L -
[o wntdwr(x)ax + A, [ w (x)w (x)dx + AL [wwww] =0 . (8.18)

2
+
Now interchange m and n in (8.18) and take the difference of the two

equations. This will show that

L
IO wn(x)wm(x) + [wnwm + wnwm]x*-'L =0 .
if m#n . (8.19)
X wrx)wm(x)ax = 0,
0 m n
If we set m=n (8.18) we see as well that
) A 4 L 2 2 2
dx = 1 + + . .
IO wn(x) x = u {fo wn(x)dx [wn wn]st} (8.20)

From (8.19) we see that << ,up>> =0 if m # n and |m| # |n] and from
(8.20) we see <<un,u_n>> =0 as well, n=1,2,... . Hence {“n}’ n =
+1,%2,... of eigenfunctions forms an orthonomal set in H. It is easy to
show it is complete as well. Furthermore we assume it is normalized so that

<<up,u >> = 1. Hence if ug € D(A) C H

=
K
L)
A

[
~ - At = nt 1
u(t) e u, 2 ce w (8.21) Fi
. n==cw >
n#0 <

-

where the {cn} are complex coefficients satisfying

cad T e SaTac
<N

Cn = <<u°'u,1>>, n = 21, 22,... . (8022)

Jol o3|
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Theorem 8.1. Consider the control system (8.1)=(8.2).

Since ;; = u_n, ;; = X-n' (where the overbar denotes complex

conjugation) we can write (8.21) as

® At ® At

u(t) = J ce a4 1 c_ e e
n n -n n
n=1 n=1
Because u is real we must have Z; = c., as well and
u(t) = 2 Re Z c e u . (8.23)
n-1 B n

As advertised earlier our condition B'eAtw =0 for all t ¢ Rt is

equivalent to the fourth component b(t) = 0 for all ¢t ¢ Rt. 1If we write

Sh = ap + ig, and use (8.23) this means for all t ¢ R" that

[}
2 2 2, _
n§1 (a, sin u t +8 cos yt) yw (L) =0 . (8.24)

The left hand side of (8.24) defines an almost periodic function and hence by

the uniqueness theorem for almost periodic functions [19] the coefficients

mish vanish, i.e.

2 ., =
Gnun Wn(L) o .,
n=1 2,ce0 = (8.25)
2 ., -
Bnun wn(L) o ,

From the spectral relation (8.12) we know un # 0. Furthermore (8.13)~-

(8.15) when coupled with wﬁ = 0 at x =1 force w

0. But this

contradicts the u, being eigenfunctions so we know wA(L) # 0. Hence (8.25)

implies a, = Bn =0, i.e. ¢y = 0. We can now apply Theorem 7.1 to conclude

the following result.

Then feedback control

£(t) r sgn wtx( 't) for lwtx L,t)| »>r

<
= -wtx(L,t) for |wtx(L,t)| r

-21-
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yields a unique weak solution ;o (8.1), (8.2) for initial data (wo,vo,a,b)
in H = {(w,v,a,b) < H2(0,1) x L2(0,1) x Rx Rt w=w' =0 if x = 0}. In

addition the zero solution of (8.1) is uniformly asymptotically stable in H.

Proof. Observe that u = (w,v,a,b), B'u = wtx(L,t). So use of Theorem 7.1

2nd the definition of uniform asymptotic stability gives the result.

Notice that Theorem 5.1 also applies in this case since B is compact.
However as noted earlier Theorem 7.1 yields the stronger result in that
convergence to the zero equilibrium solution is in the strong rather than weak
topology.

8.2. Boundary control of the NASA Spacecraft Laboratory Control Experiment (SCOLE)

An example where Theorem 5.1 applies and Theorem 7.1 does not is provided Ei
by the stabilization problem for the NASA Spacecraft Laboratory Control E
Experiment (SCOLE). Since the details of the mathematical model (which are %
very lengthy) are provided in the papers ¢of Balakrishnan [5) and Balakrishnan ?

and Taylor (6] we only sketch the main ideas here.

First we quote from [5) for a description of the physical problem.

"The physical apparatus consists of a softly supported antenna
attached to the space shuttle by a flexible beam like truss. The control
objective is to slew the antenna on command within the given accuracy and
maintain stability, based on noisy sensor data and limited control
authority; allowance must be made for random disturbance. The control
forces and torques are applied at the shuttle end as well as the antenna
end and in addition provision is made for a small number of z-axis proof-

mass activators along the beam."

-22-
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Q In (5] Balakrishnan shows that in the absense of noise the problem can be
L Py

' .

g reformulated in the form (5.6) where H = (L,(0,L))3 x R'%, <au,u> = o,

td <Q(u),u> = 0, E = 310, and B.eAtw =0 for all t ¢ RY implies y = 0. So
4

G

'2 the Corollary to Theorem 5.1 implies the zero solution is stable and

'

&

L)

' furthermore u(t,up) + 0 as t + =« for all ug ¢ H. So the feedback control
Y law f(t) = K(u(t)) provides a "weakly” damping resolution of the SCOLE
A,

s problenr under the constraint £ E € r.« Of course since E = R10 and not R
_5 Theorem 7.1 does not apply.
N
"
)
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